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Partial least squares (PLS) regression modeling was used to relate the antifungal activity of Bacillus
subtilis solid-state fermentation extracts to the individual high-performance liquid chromatography
(HPLC) peaks from those extracts. A model was developed that predicted bioassay inhibition based
on the extract HPLC profile (R2 ) 0.99). Concentrations of the members of the antifungal lipopeptide
families iturin A and fengycin were found to correlate positively with extract inhibition, but a peak with
unidentified chemical composition (designated as peak 48) showed the strongest correlation with
extract inhibition. HPLC data were used to construct models for the production of iturin A, fengycin,
and peak 48 as a function of the substrate moisture content, incubator temperature, and aeration
rate in the solid-state bioreactors. Maximum production of all compounds occurred at the highest
moisture content (1.7 g/g dry basis) and lowest incubator temperature (19 °C) tested. Optimal aeration
rates for the production of the two known lipopeptides and peak 48 were 0.1 and 1.5 L/min,
respectively.

KEYWORDS: Biocontrol; iturin; fengycin; Bacillus subtilis; PLS; solid-state fermentation

INTRODUCTION

Bacillus subtilis is a spore-forming bacterium commonly used
in commercial and research biocontrol products (BCPs) to
control a variety of plant pathogens (1–4). Such products may
consist of bacterial spores, (fermentation broth containing)
biologically active metabolites, or a combination of both.
Product efficacy for B. subtilis BCPs is thought to be a function
of its ability to produce a spectrum of antifungal lipopeptide
families, including iturin A, fengycins, plipastatins, and sur-
factins (5). Although the biological activities of many of these
individual compounds have been studied (6–9), little information
is available concerning how they may function in combination.
Surfactin has little antifungal activity on its own but has been
shown to synergistically enhance the activity of iturin A (10).
Although B. subtilis produces a host of biologically active com-
pounds, it is not clear how each compound affects the overall

biological activity in the complex mixture of a BCP. Only limited
work has been done on the effect of fermentation conditions on
the production of these compounds in submerged fermentation
(SMF) or solid-state fermentation (SSF) systems (11, 12).

This paper uses data from an optimization of SSF BCP extract
activity for further modeling and analysis (13). Those optimiza-
tion results showed that antifungal activity and spore production
were both more sensitive to substrate moisture content than to
the aeration rate or incubator temperature. The highest levels
of each response variable occurred at maximum dry basis (db)
moisture contents (1.7 g/g). Maximum antifungal activity was
seen in a limited area of the design space (high moisture content,
low incubator temperature, and moderate aeration). Spore
production, however, was fairly robust with near-maximum
levels occurring over a wider range of incubator temperatures
and aeration rates. The goals of this paper are (1) to elucidate
the relationship between BCP metabolite composition and
antifungal activity and (2) to identify fermentation conditions
that produce the maximum levels of compounds found to be
associated with that activity.

Modeling fungal growth inhibition as a function of high-
performance liquid chromatography (HPLC) chromatographic
data will allow a more rapid assessment of BCP biological
activity without having to use more time-intensive biological
assays. Such high-throughput methods for product assessment
will speed product development. Individual models developed
for the production of specific BCP extract components will help
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us understand the conditions in which important antifungal
compounds are produced either in fermentation reactors or in
situ after BCP application. The models will also allow for a
higher level of product specification based on pathogen sus-
ceptibility to BCP components.

MATERIALS AND METHODS

Sample Preparation. B. subtilis strain TrigorCor 1448 (14) was
grown in 0.5 L SSF bioreactors using wheat middlings as a growth
substrate (15). Growth conditions were optimized for spore production
and antifungal activity of product extracts (13). Optimization parameters
included incubator temperature, aeration, pH buffering, nitrate addition,
peptone supplementation, fermentation time, and substrate moisture
content. A central composite face-centered experimental design (Table
1) was used for response surface modeling of the effects of the incubator
temperature, aeration rate, and substrate moisture content on product
composition and efficacy. The effects of these parameters on product
spore concentrations and extract antifungal activity have already been
reported (13). Sample extracts from the 19 treatments were prepared
and diluted in methanol at a concentration of 80 mg of BCP/mL for
HPLC analysis (13).

Microbial Inhibition Assays. A 96-well microplate bioassay was
used to measure the inhibition of BCP extracts against Fusarium
oxysporum f. sp. melonis (13). Extract inhibition was tested by adding
100 µL of potato dextrose broth, 10 µL of BCP extract or solvent
control, and 100 µL of a F. oxysporum spore suspension (104 spores/
mL) to each well. BCP extracts were diluted in methanol, and all
treatments were measured in triplicate. Plates were read before and
after incubating at 25 °C for 48 h using a Synergy HT plate reader
(Bio-Tek Instruments, Winooski, VT). Percent inhibition was deter-
mined by comparing the absorbance (620 nm) increase of the wells
containing the BCP extract with wells containing the control solvent
used for extract dilution.

HPLC Analysis. The HPLC method described previously (15) was
modified to improve peak separation. A System Gold HPLC (Beckman
Coulter, Inc., Fullerton, CA) was used for all separations. Samples were
injected onto a Varian Polaris (Palo Alto, CA) 5 µm C18 column (4.6
× 250 mm) and eluted at a flow rate of 1 mL/min. Gradient conditions
were as follows: [acetonitrile (A) and water (B), each with 0.1%
trifluoroacetic acid] 0–1 min, 45% A; 1–31 min, 45–65% A; 31–41
min, 65–88% A; 41–51 min, 88% A; and 51–59 min, 45% A. The
elution profile was monitored with a photodiode-array (PDA) detector
over the UV absorbance range of 194–350 nm. Injections of 20 µL
were made with extract concentrations of 80 mg of BCP/mL in
methanol.

Several larger peaks common to all extracts were identified from
the HPLC data and used as chromatogram reference points. All peaks
eluting between these references were time-scaled to account for minor
variations in elution times between samples. From the data profiles,
61 peaks found to be present in all or most of the samples were used
for modeling.

A representative BCP extract sample was further fractionated for
peak identification by mass spectrometry. A 20 µL volume of a sample
extract diluted to 50 mg of extract/mL (4.27 g of BCP/mL) was
separated using the described HPLC system and a Foxy 200 fraction
collector (Isco, Lincoln, NE). Fractions were collected in 12 s
increments and pooled to analyze individual peak components. These
pooled HPLC fractions in the original mobile phase [mixtures of
acetonitrile (0.1% TFA)/H2O (0.1% TFA)] were infused into a
Micromass ZMD-4000 (Waters Corporation, Milford, MA) spectrom-
eter at 5 µL/min with a syringe pump (Harvard Apparatus, Holliston,
MA). Low-resolution electrospray ionization mass spectrometry (ESI–
MS) spectra were acquired in the positive-ion mode using a capillary
voltage of 4 kV and sample cone voltages of 40 and 80 V.

Modeling. PLS Inhibition Modeling. Partial least squares (PLS)
regression modeling was done using the Simca-S software (Umetrics,
Umea, Sweden) to determine relationships between individual chro-
matographic peaks and overall extract inhibition. PLS regression is a
widely used analysis tool in the chemometrics field (16). In addition
to modeling the date data, PLS produces a variable importance to the
projection (VIP) parameter that shows the relative value of each
predictor variable to the PLS model (16). The final PLS model relates
each individual HPLC peak area to extract inhibition in the form of
eq 1.

y) �0 +∑
i)1

n

�iAi (1)

where y is the extract inhibition at 20 mg of BCP/mL in the microplate
bioassay, �0 is the model constant term, i is the peak number (in order
of decreasing VIP), n is the total number of peaks (61) in the model,
�i is the linear coefficient associated with peak i, and Ai is the area
under the curve of HPLC peak i.

Aggregate Component Inhibition Modeling. Groups of peaks identi-
fied through PLS modeling were combined for additional inhibition
modeling to better understand the role of compound families on extract
inhibition. Peaks were pooled in several combinations according to their
chemical composition (iturin A, fengycin, or other components) as
determined from mass spectrometry (MS) analysis. HPLC peak areas
for groups of peaks were summed and related to extract inhibition with
a linear least-squares regression. Regression modeling was done using
a MATLAB (The MathWorks, Inc., Natick, MA) program to estimate
model coefficients for the following equation:

y)R0 +∑
j

Rjzj (2)

where y is the extract inhibition at 20 mg of BCP/mL in the microplate
bioassay, R0 is the model constant term, Rj is the linear coefficient
associated with peaks in group j, zj is the area under the curve of HPLC
peaks for group j, and j is the peak grouping (i.e., iturin A, fengycin, etc.).

Extract Component Modeling. HPLC peak data were used to generate
response surfaces for iturin A, and fengycin, and peak 48 production
as a function of the incubator temperature, aeration rate, and substrate
moisture content. Data for each lipopeptide were transformed by a
square-root function prior to modeling to reduce the lack of fit statistic.
A MATLAB program was written to estimate model parameters for
the following equation:

y) b0 + b1x1 + b2x2 + b3x3 + b4x1
2 + b5x2

2 + b6x3
2 + b7x1x2 +

b8x1x3 + b9x2x3 (3)

where y is the response variable (measure of lipopeptide concentration),
b0–9 are the model parameters, x1 is the aeration level (in L/min), x2 is
the substrate initial dry basis moisture content (in g/g), and x3 is the
incubator temperature (in °C).

Table 1. Experimental Design and Results from Fermentation Optimization

treatment

aeration
rate

(L/min)

moisture
content
(g/g db)

incubator
temperature

(°C)

iturin A
concentration

(mg/g)

fengycin
(HPLC
peak
area)

peak 48
(HPLC
peak
area)

1 0.1 1.00 19 0.893 71.71 3.73
2 0.1 1.00 27 0.593 28.17 2.33
3 0.1 1.70 19 1.274 88.41 5.70
4 0.1 1.70 27 0.569 21.61 3.25
5 1.5 1.00 19 0.778 41.31 2.65
6 1.5 1.00 27 0.569 39.04 3.20
7 1.5 1.70 19 1.172 83.83 9.97
8 1.5 1.70 27 0.751 41.23 5.47
9 0.1 1.35 23 0.752 35.07 4.74
10 1.5 1.35 23 0.904 60.57 7.47
11 0.8 1.00 23 0.822 63.17 4.98
12 0.8 1.70 23 0.848 66.45 6.09
13 0.8 1.35 19 1.006 46.05 6.89
14 0.8 1.35 27 0.652 33.69 4.67
15 0.8 1.35 23 0.808 38.11 6.24
16 0.8 1.35 23 0.804 26.47 5.81
17 0.8 1.35 23 0.855 36.08 6.36
18 0.8 1.35 23 0.835 30.31 5.79
19 0.8 1.35 23 0.780 26.30 5.16
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The MATLAB program was also used to determine theoretical
stationary points and local maxima within the design space, create
analysis of variance (ANOVA) tables for models, and plot response
surface model results. Models were developed using a linear least-
squares method described previously (13).

Model coefficients were tested for significance using SPSS software
(SPSS, Inc., Chicago, IL); parameters whose coefficients had a p value
greater than 0.05 were sequentially removed to determine the effect of
the parameter on the model R2 and Radj

2 values. Parameters were
permanently removed from the model when it was seen that their
inclusion had a negative impact on Radj

2 values.

RESULTS

PLS Regression. HPLC chromatograms from each of the
19 samples were analyzed concurrently, and 61 common
individual peaks were identified for PLS regression analysis.
The 61 chromatographic peaks were used to develop a model
predicting microplate bioassay inhibition levels against F.
oxysporum at 20 mg of BCP/mL. This concentration was chosen
because the extract inhibition data points at this concentration
showed the greatest spread and facilitated sample differentiation
(13). During analysis, 16 peaks with VIP coefficients less than
0.55 were identified as not contributing significantly to the model
and were removed, leaving 45 peaks. Model coefficients for
the constant term and each peak, in order of VIP, are shown in
Table 2. The resultant model had R2 and Q2 (cross-validated
R2) values of 0.988 and 0.811, respectively. The Q2 value is a
conservative estimate of the predictive capability of the model
when using new data. Observed versus predicted values are
plotted in Figure 1. A normal probability plot of residuals
showed no deviation from normality (data not shown).

The nine most influential (shown in Figure 2), as determined
by VIP value (shown in Figure 2), were chosen for further
analysis by MS. Most of these peaks were positively related to
inhibition, as shown by the model coefficients in Table 2.

Results of MS analysis for those peaks are shown in Table
3. Peaks 4, 5, and 8 were all identified as belonging to the iturin
A family and were positively correlated with extract inhibition.
PDA spectra for these peaks also matched with an iturin A
standard (data not shown). Peaks 31, 38, and 43 all contained
mass ions associated with fengycin homologues. Peak 38 was
negatively related to extract inhibition, while peaks 31 and 43
showed a positive relationship with inhibition.

Additional peaks were also examined by MS. Two additional
peaks were found to have the same molecular weight as iturin
A homologues, while 14 more peaks eluting between 26 and
41 min contained compounds with molecular weights equivalent
to known fengycin components. Although peaks 48, 51, and
56 all had high VIP values, mass spectra from these peaks did
not match with masses of surfactins or other antibiotics known
to be produced by B. subtilis.

Aggregate Component Modeling. It was noted through PLS
modeling that component peaks of iturin A and fengycin
together with peaks with unidentified chemical composition (i.e.,
peaks 48 and 51) were associated most strongly with the
antifungal activity of BCP extracts. In an attempt to simplify
the model, HPLC peak area data were pooled according to
individual peak chemical identification. PLS modeling showed
that individual peaks identified as either iturin A or fengycin
homologues could have either a positive or negative correlation
with extract inhibition as reflected by model coefficients in
Table 2. Iturin A and fengycin groups were divided into peaks
with positive and negative PLS model coefficients. The com-
bined data were then used for linear least-squares regression

modeling to examine the relationship between groups of
individual peaks and extract inhibition.

Models were developed including several different combina-
tions of peak groupings. Peak 51 was included in modeling

Table 2. PLS Regression Modeling of HPLC Peak Area and Microplate
Inhibition Data

coefficienta VIP coefficient value

�0 0.109
�48 1.73 0.011
�51 1.65 0.040
�4 1.49 0.028
�56 1.36 -0.223
�38 1.36 -0.027
�5 1.31 0.006
�8 1.30 0.007
�43 1.30 0.146
�31 1.27 0.010
�35 1.15 -0.021
�61 1.11 0.088
�46 1.05 -0.216
�33 1.04 0.032
�23 1.04 0.008
�20 0.99 0.010
�2 0.97 -0.032
�9 0.94 0.007
�27 0.94 -0.010
�15 0.92 0.102
�18 0.91 0.027
�40 0.91 0.060
�36 0.91 0.029
�39 0.90 0.043
�1 0.89 -0.001
�50 0.88 -0.070
�49 0.88 -0.057
�11 0.87 -0.026
�32 0.87 0.063
�42 0.86 0.378
�3 0.85 -0.059
�21 0.83 -0.017
�16 0.81 0.007
�24 0.81 0.008
�45 0.79 0.012
�6 0.79 0.003
�25 0.74 0.003
�52 0.73 0.012
�13 0.72 -0.004
�12 0.71 -0.0338
�26 0.69 -0.0023
�29 0.63 -0.0002
�22 0.61 -0.0006
�47 0.60 -0.1341
�59 0.60 -0.0067
�41 0.58 0.0590

a The parameter subscript denotes the HPLC peak number.

Figure 1. Comparison of the observed fungal inhibition and that predicted
by the PLS model based on HPLC peak areas.
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either as an individual component or in combination with peak
48, but its inclusion did not yield significant model improve-
ments. Similarly, inclusion of fengycin peaks negatively cor-
related with inhibition did not improve the model. Model
adequacy was based on model fit (R2 and Radj

2 values) and
simplicity in terms of the total number of parameters. The best
model based on these criteria was

y) 5.07z1 - 7.73z2 + 1.171z3 + 2.08z4 (4)

where z1 is the sum of HPLC peak areas for all iturin A peaks
with positive PLS model coefficients, z2 is the sum of HPLC
peak areas for all iturin A peaks with negative PLS model
coefficients, z3 is the sum of HPLC peak areas for all fengycin
peaks with positive PLS model coefficients, and z4 is the HPLC
peak area for peak 48.

The R2 and Radj
2 values for this model were 0.825 and 0.790,

respectively. This final model fits the data well and is in
agreement with earlier work presented here. According to the
model, iturin A, fengycin, and peak 48 all contribute positively
to extract inhibition as shown in the PLS model. The addition
of the iturin A peak with a negative PLS coefficient confirmed
the negative effect of the peak and yielded significant model
improvements.

Iturin A Quantification and Modeling. Five major peaks
were identified as belonging to the iturin A family through
chromatographic comparison with an iturin A standard and
subsequent molecular-weight confirmation by MS. The HPLC
areas for these peaks were summed, and an eight-point iturin
A standard curve (R2 ) 0.9996, data not shown) was used to
convert HPLC peak areas into units of mg of iturin A/g of dry
BCP. All iturin A peaks were assumed to have the same
response factor for standard curve development.

Iturin A concentrations (Table 1) were used to create a
response surface model (in the form of eq 3) of the square root
of iturin production as a function of aeration, moisture content,
and incubator temperature. Quadratic terms associated with each
of the main factors were found to be negligible and were
removed from the model before re-evaluating the parameters.
The resulting equation was squared to yield the final model of
iturin A production (mg/g dry BCP)

y) (0.31- 0.52x1 + 1.45x2 + 0.01x3 + 0.11x1x2 +

0.02x1x3 - 0.06x2x3)
2 (5)

The ANOVA table for the model (Table 4) shows that the
significance of the regression is very high (p ) 0.0002). The
lack of a fit test, although not significant at the 95% confidence
level, is higher than would be desirable (p ) 0.0630). This is
primarily due to the fact that chromatographic peaks for iturin
A and other components in replicate treatments were very
similar in peak areas, resulting in a low pure error component
of the residual mean square. The high level of significance of
the regression together with the high R2 and Radj

2 values (0.937
and 0.905, respectively) indicate an acceptable model. Further,
a plot of residuals versus predicted values from the model
revealed no model inadequacy.

Figure 3 shows contour plots of the model at dry basis
moisture contents of 1, 1.35, and 1.7 g/g. These results show
that iturin A production is highly sensitive to the incubator
temperature. Initial substrate moisture content also has a strong
effect on iturin A production but primarily when the incubator
temperature is low. The highest concentrations of iturin A
(approximately 1.4 mg/g dry BCP) were produced at the lowest
incubator temperature (19 °C) and highest dry basis moisture
content (1.7 g/g) in the study. Aeration rates did not have a
significant impact in this area of the design space, but the model
generally shows that reactors tend to produce more iturin A
operating at lower aeration rates.

Fengycin Modeling. A similar analysis was completed for
peaks associated with fengycins. At least 18 peaks were
identified as containing a fengycin component. HPLC peak areas
were summed for all of these peaks, and the total area (Table
1) was used for estimating model parameters. The quadratic
terms associated with the aeration rate and incubator temperature
and the aeration–moisture content interaction term were found
not to be significant at the 95% confidence level. These terms
were removed from the model before re-evaluating the param-
eters. The resulting equation was squared to yield the final model
of total fengycin production (sum of the HPLC peak area/1.6
mg of dry BCP) as shown in eq 6

y) (21.6- 4.81x1 - 16.7x2 + 0.026x3 + 9.71x2
2 +

0.223x1x3 - 0.370x2x3)
2 (6)

The ANOVA table for the model is shown in Table 5. Similar
to the iturin A model, the ANOVA table shows that the probable

Figure 2. HPLC peaks selected for MS analysis.

Table 3. Summary of the Results of MS Analysis of Selected HPLC
Peaks in Order of VIP

peak
number

mass ion
(m/z) assignment

48 unknown
51 unknown
4 1057.3 (M + H)+, 1079.4 (M + Na)+ iturin A
56 unknown

38
724.4 (M + 2H)+2 unknown
731.5 (M + 2H)+2 unknown
753.4 (M + 2H)+2 fengycin B (C17)

5 1057.3 (M + H)+, 1079.3 (M + Na)+ iturin A
8 1071.5 (M + H)+, 1093.6 (M + Na)+ iturin A
43 760.6 (M + 2H)+2 fengycin B (C18)

31
739.5 (M + 2H)+2 fengycin A (C17), B (C15)
746.5 (M + 2H)+2, 757.5 (M + H +

Na)+2
fengycin A (C18), B (C16)

Table 4. ANOVA Table for the Model of Iturin A Productiona

source of
variation

sum of
squares

degrees of
freedom

mean
square F0 p value

regression 0.560 6 0.093 29.55 0.0002
residual 0.038 12 0.0032
lack of fit 0.035 8 0.0043 5.26 0.063
pure error 0.0033 4 0.000 83
total 0.59 18 0.033

a The R2 value for the model is 0.937, and the Radj
2 value is 0.905.
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significance of the regression is very high, while the lack of
the fit test, although not significant at the 95% confidence level,
had a lower p value than would be desired. The fengycin model
appears acceptable, with R2 and Radj

2 values of 0.761 and 0.642,
respectively. It does not, however, fit as well as the iturin A
model. Again, a plot of residuals versus predicted values and a
normal probability plot of residuals (results not shown) revealed
no model inadequacy.

Figure 4 shows the contour plot of the fengycin model at
dry basis moisture contents of 1, 1.35, and 1.7 g/g. These results
show that, at high moisture contents, the pattern of fengycin
production is very similar to that of iturin A production. High
moisture content and low incubator temperature are the most

important parameters in fengycin production. Production is fairly
robust across aeration rates, but the model predicts somewhat
higher concentrations at low aeration rates.

Peak 48 Modeling. Peak 48 was chosen for further analysis
and modeling because it was shown to be the most important
parameter in the inhibition model according to VIP values. Peak
51 was also shown to have a high model importance and was
positively correlated (R2 ) 0.705) with peak 48 levels (data
not shown). HPLC peak area data for peak 48 are included in
Table 1. The quadratic term associated with the aeration rate
and the aeration–incubator temperature interaction term were
found not to be significant at the 95% confidence level. These
terms were removed from the model before re-evaluating
the parameters. The final model for peak 48 production
(HPLC area/1.6 mg of dry BCP) is as shown in eq 7

y)-39.2- 3.3x1 + 31.9x2 + 2.2x3 - 6.76x2
2 +

-0.04x3
2 + 3.4x1x2 - 0.54x2x3 (7)

The ANOVA table for the model is shown in Table 6. The
ANOVA table again shows a high significance of the regression
(p ) 0.0001) and no significance for the lack of fit (p ) 0.147).
The R2 and Radj

2 values are 0.905 and 0.844, respectively.

Figure 3. Results of the response surface modeling of iturin A yield as
a function of aeration, incubator temperature, and moisture content (MC).

Table 5. ANOVA Table for the Model of Fengycin Productiona

source of
variation

sum of
squares

degrees of
freedom

mean
square F0 p value

regression 27.6 6 4.60 6.38 0.003
residual 8.66 12 0.72
lack of fit 7.72 8 0.965 4.14 0.093
pure error 0.93 4 0.233
total 36.25 18 2.014

a The R2 value for the model is 0.761, and the Radj
2 value is 0.642.

Figure 4. Results of the response surface modeling of fengycin yield
(HPLC peak area) as a function of aeration, incubator temperature, and
MC.
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Figure 5 shows the contour plots of the model at dry basis
moisture contents of 1, 1.35, and 1.7 g/g. These results show
that, at constant moisture content, the pattern of peak 48
production is significantly different to that of iturin A or fengycin
production with respect to the importance of aeration. The
moisture content, incubator temperature, and aeration rate were
all shown to have significant effects on production levels.
Maximum values occurred at the highest moisture content (1.7
g/g), lowest incubator temperature (19 °C), and highest aeration
rates (1.5 L/min) tested.

DISCUSSION

The PLS regression model developed draws correlative
relationships between the BCP extract HPLC peak area data

and the antifungal activity of those extracts. The development
of a PLS model to predict bioassay inhibition based on the
HPLC chromatographic profile is useful for several reasons.
HPLC analyses of BCP extracts are faster and more precise
than bioassays, and such a model allows for a higher throughput
method for fermentation screening. Peaks with high VIP values
can be examined more thoroughly to determine the chemical
structure and antifungal activity. Those peaks with strongly
positive or strongly negative correlation coefficients can be
evaluated as individual compounds rather than as part of
composite groups.

The predictive activity model also allows for the estimation
of bioassay EC50 (effective concentration for 50% control)
values as an alternative means of quantifying activity between
extracts. Extracts with similar inhibitory properties at a given
concentration may have dissimilar dose–response curves, making
EC50 a more accurate quantification of the overall activity.

Aggregate modeling confirmed the importance of iturin A,
fengycin, and peak 48 to BCP extract inhibition, as suggested
in PLS modeling results. These lumped parameter models
provide a clearer link between BCP extract chemical composi-
tion and the inhibitory quality of that extract. Because the
relative importance of each model component (positively and
negatively correlated iturin A components, positively correlated
fengycin components, and peak 48) is different, the overall
extract inhibition depends upon the extract composition. These
model results show that peak 48 accounts for approximately
25% of the total activity within this data set, while iturin A and
fengycin each account for 38%.

Of the five major peaks identified as iturin A, all but one
were positively correlated with extract inhibition. One iturin A
component (peak 1) was negatively correlated with inhibition
and had a molecular weight of 1042 Da, the lowest of all iturin
A homologues found. Its negative relationship with extract
inhibition was confirmed by further aggregate modeling. Mo-
lecular-weight differences between iturin A species are indica-
tive of the length of the carbon tail attached to the peptide ring.
Lipopeptides with longer carbon tails have been shown to have
stronger antifungal activity than those with shorter tails (17).
These results indicate that it is important to consider the iturin
A constituent fraction composition, as well as the total mass,
during BCP production.

Of the 18 fengycin components found, 10 were found to
correlate positively with inhibition, while 4 showed a negative
correlation and 3 were negligible and removed from the model.
No relationship was apparent between inhibition and component
molecular weight as was seen for iturin A.

Although the incubator temperature is shown to be an
important factor in the solid-state production of iturin A, the
relationship between the maximum reactor temperature (model
not shown) and iturin A production is not well-defined. The
reactor temperature may be limited with low incubator temper-
atures, low moisture contents, or high aeration rates. Although
each of these fermentation conditions can be adjusted to control
maximum reactor temperatures, only by decreasing incubator
temperatures was iturin A production substantially increased.
Lowering the moisture content has an overall negative effect
on total iturin A production. In the case of low moisture contents,
iturin A yield gains from the resultant reactor temperature
control are lost because of the lower cell mass found with these
conditions (13). Likewise, increasing the reactor aeration rate
generally decreases the final product spore counts.

High moisture contents improve iturin A yields partially
because of increased cell mass. High moisture contents increase

Table 6. ANOVA Table for the Model of Peak 48 Productiona

source of
variation

sum of
squares

degrees of
freedom

mean
square F0 p value

regression 54.4 7 7.77 14.95 0.0001
residual 5.72 11 0.52
lack of fit 4.82 7 0.69 3.08 0.147
pure error 0.90 4 0.22
total 60.1 18 3.34

a The R2 value for the model is 0.905, and the Radj
2 value is 0.844.

Figure 5. Results of the response surface modeling of peak 48 yield (HPLC
peak area) as a function of aeration, incubator temperature, and MC.
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biofilm volume per dry gram of substrate, effectively increasing
the usable space within the bioreactor. The interaction with
temperature, however, is evident because high spore counts
(>2.5 × 1010 spores/dry g) can be seen at incubator temperatures
of 27 °C and moisture contents as low as 1.35 g/g (13).

Interestingly, SSF models of iturin A and fengycin production
were very similar to one another but do not match with models of
oxygen use (data not shown) or spore production (13). There are
some similarities between models of inhibition and lipopeptide
production because maximum levels of each are seen at high
substrate moisture contents and low incubator temperatures. Aera-
tion, however, has a strong positive effect on inhibition and a lesser
negative effect on lipopeptide production. Aeration rates for
producing maximum inhibition are highest at an aeration rate of
1.0 L/min, with levels dropping steadily with aeration rates less
than 0.7 L/min. It is expected that both fengycin and iturin A play
a role in extract inhibition because their antifungal properties have
been documented (18, 19). In addition, extract fractions containing
these compounds were found to contain the majority of the activity
of the nonseparated extract (15). The contrast in models for extract
inhibition and lipopeptide production, however, indicate that there
may be additional compounds produced at higher aeration rates
that play a significant role in the overall activity.

The model developed for peak 48 was significantly different
than those for either iturin A or fengycin. This suggests that
fermentation conditions could be controlled to alter the me-
tabolite profile. BCPs from B. subtilis or other organisms could
thus be tailored to specific pathogens based on susceptibility to
specific compounds.

Unlike models for iturin A or fengycin production, aeration
has a strong positive effect on peak 48 production. The resultant
model for peak 48 production matches much more closely with
the overall inhibition model (13). Because the MS mass ions
of this peak did not match with any known antibiotics produced
by B. subtilis, it may represent a new chemistry produced by
this strain. Further work is in progress to characterize the
antifungal activity and chemical structure of this peak.

In conclusion, PLS and subsequent aggregate component
modeling showed the importance of iturin A, fengycin, and the
unidentified peak 48 in the inhibition of F. oxysporum in
microplate bioassays. Both models allow for the prediction of
antifungal activity based on the HPLC profile of the BCP extract.
Such models will allow for higher throughput screening of
fermentation conditions to produce higher concentrations of
lipopeptides or other antifungal metabolites. Further response
surface modeling of iturin A and fengycin showed that these
compounds have very similar production profiles and are likely
regulated through similar pathways. Peak 48, however, was
shown to have a different production profile, and the correlation
between it and the overall antifungal activity suggests further
exploration of this peak chemistry.
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